Project Name: Proposed Office Development at Caroline Hill Road, Causeway Bay
Daily Water Demand Calculation

Calculation of Peak Daily Demand

1. AC Make-up Water

> As per CT1A,

Estimated peak daily make-up water demand by T1T2 cooling tower $=843.02 \mathrm{~m}^{3} /$ day

> As per CT1A,

Estimated peak daily make-up water demand by T3 cooling tower $=21.36 \mathrm{~m}^{3} / \mathrm{day}$
Total peak daily make-up water demand of CHR $\quad=864.38 \mathrm{~m}^{3} /$ day
2. Water Consumption Estimation for Proposed Development
(Based on EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning)

Design Assumption:

Global Unit Flow Factors as per Tables T-2 and T-3
Catchment Inflow Factor for Wan Chai (PCIF =1.0) as per Table T-4

Estim	Water Consumption for Caroline Hill Road	Estimation
(1)	GFA (m²) for Office use	85,300
(2)	Assumed 60\% for Usable Floor Area	51,180
(3)	Worker Density (No. of Worker per 100m²)	3.2
(4)	No. of Employee	1,638
(5)	Unit flow factor ($\mathrm{m}^{3} /$ person/day) - J6 Financial, Insurance, Real Estate \& Business Services	0.08
(6)	Sub-total Daily Water Consumption ($\mathrm{m}^{3} /$ day)	131.0
(7)	GFA (m^{2}) for Non Domestic	10,000
(8)	Assumed 60\% for Usable Floor Area	6,000
(9)	50\% GFA (m^{2}) for F\&B	3,000
(10)	Worker Density (No. of Worker per $100 \mathrm{~m}^{2}$)	5.1
(11)	No. of Employee	153
(12)	Unit flow factor (m³/person/day) - J10 Restaurant \& Hotels	1.58
(13)	Sub-total Daily Water Consumption ($\mathrm{m}^{3} /$ day $)$	241.7
(14)	50% GFA (m^{2}) for Retail	3,000
(15)	Worker Density (No. of Worker per $100 \mathrm{~m}^{2}$)	2.1
(16)	No. of Employee	63
(17)	Unit flow factor (m³/person/day) - J4 Wholesale \& Retail	0.28
(18)	Sub-total Daily Water Consumption ($\mathrm{m}^{3} /$ day $)$	17.6
(19)	GFA (m) for GIC	3,100
(20)	Assumed 60\% for Usable Floor Area	1,860
(21)	Worker Density (No. of Worker per 100m²)	2.3
(22)	No. of Employee	43
(23)	Unit flow factor ($\mathrm{m}^{3} /$ person/day) - J11 Community, Social \& Personal Services	0.28
(24)	Sub-total Daily Water Consumption ($\mathrm{m}^{3} /$ day)	12.0
(25)	Total Daily Water Consumption (6)+(13)+(18)+(24), (m²/day)	402.4

3.Total Water Consumption Estimation for Proposed Development

Calculation of Pipe Capacity

DN150 Water PE Pipe Capacity

Nominal Diameter (mm)	Internal Diameter (mm)	Pipe Material
200	200	DI
150	147	PE100 (OD180)

Q	$=\mathrm{AV}$
DN150 Water Pipe Capacity	$=\pi(0.0736)^{2}(1.5)$
(Assume $1.5 \mathrm{~m} / \mathrm{s})$	$=0.0255 \mathrm{~m}^{3} / \mathrm{s}$
	$=2205.52 \mathrm{~m}^{3} / \mathrm{d}$
DN150 Water Pipe Capacity	$=\pi(0.0736)^{2}(2.0)$
(Assume $2.0 \mathrm{~m} / \mathrm{s})$	$=0.0340 \mathrm{~m}^{3} / \mathrm{s}$
	$=2940.69 \mathrm{~m}^{3} / \mathrm{d}$

DN200 Water Ductile Iron Pipe Capacity

Q	$=A V$		
$\varnothing 200$ Water Pipe Capacity	$=\pi(0.100)^{2}(1.5)$		
$($ Assume $1.5 \mathrm{~m} / \mathrm{s})$	$=0.0471 \mathrm{~m}^{3} / \mathrm{s}$		
	$=4071.50 \mathrm{~m}^{3} / \mathrm{d}$		
$\varnothing 150$ Water Pipe Capacity	$=\pi(0.100)^{2}(2.0)$		
(Assume $2.0 \mathrm{~m} / \mathrm{s})$	$=0.0628 \mathrm{~m}^{3} / \mathrm{s}$		
	$=5428.67 \mathrm{~m}^{3} / \mathrm{d}$		
	DN150 Water pipe is enough for the whole CHR development	\quad	as per WSD DI1309 requirement
:---			

